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Abstract—Ultrasound-guided needle biopsy often leads to un-
certain results due to poor visualization of targets in the image.
Biopsy needles equipped with electrical impedance spectroscopy
(EIS) sensors can be used to identify the tissue at the needle tip
and provide more accurate needle guidance and lesion targeting.
A machine learning algorithm is often used to classify the tissue
based on the measured EIS spectrum. However, training machine
learning algorithms requires large amounts of data, which is
rarely available in biomedical applications. A solution to increase
the size of the dataset and improve the performance of the
classifier is to create synthetic data that closely mimics the
original measured data.

This paper proposes inverse transform sampling as a data
augmentation method for EIS to bolster training dataset size.
It exploits the cumulative distribution functions of the target
data and uses inverse sampling to generate new, synthetic data.
The method is demonstrated using an EIS dataset composing 13
different ex-vivo tissue types. The method is then validated by
comparing the performance of the synthetic data to the original
data through the use of an artificial neural network (ANN) and
a convolutional neural network (CNN). The classification results
indicate that classification sensitivity, precision, and accuracy
increase by at least 27.38, 24.86, and 19.41%, respectively, when
the classifiers used a mix of original data and data augmented
with the proposed method.

I. INTRODUCTION

Needle biopsies are the gold standard for prostate cancer
diagnosis. The biopsy needle is often guided to the lesion of
interest by ultrasound (US) imaging. While prostate cancer
usually appears as a hypoechoic region in greyscale US, it
can also appear as an isoechoic region in up to 30% of
cases [1]. As such, guaranteeing proper needle placement
and lesion sampling is not always possible until the collected
sample is histologically processed, which may result in false-
negative outcomes 20% of the time [2]. Furthermore, US-
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guided biopsies can provide unreliable information on the
severity of the lesion, with approximately 30-45% of prostate
cancer patients having the status of their diagnosis upgraded
following radical prostatectomy [2].

To improve the accuracy of US-guided prostate biopsy,
US images are often fused with magnetic resonance imaging
(MRI) images [3]. MRI images offer improved resolution
of lesions and show lesion boundaries with more clarity as
compared to US. MRI-US fusion overlays pre-operative MRI
images onto the real-time US images to aid the surgeon in
locating and targeting the lesion.

While the clinical pathway for a positive biopsy result is
clear, a negative result has an uncertain meaning. A negative
result may be due to inaccurate localisation of the lesion due to
poor fusion of the MRI and US images, or because the biopsy
needle was not inserted into the target adequately. Further, the
interpretation of the MRI may be incorrect due to operator
error or the presence of other diseases that mimic cancer in
MRI. Changes in patient position between the MRI and US
imaging may provide poor outcomes for the image fusion
[4]. Even considering conventional needle biopsy methods,
where 10-15 core samples are taken, surgeons still experience
difficulty in capturing representative samples [5]. Therefore,
to rule out false negatives, one may consider instrumenting
the biopsy needles with sensors that can provide accurate
information regarding the composition of the tissue at the
tooltip, which can ensure that the needle is placed in the
lesion before the tissue is sampled [6]. Such technology can
substantially improve the diagnostic yield for targeted biopsy
and improve confidence in biopsy results.

Needles instrumented with electrical impedance spec-
troscopy (EIS) sensors can discriminate tissue composition
while maintaining compatibility with the form factor of biopsy
needles [7]–[10]. EIS injects AC voltages into the tissue across
various frequencies while measuring the resulting AC current,
from which the tissue impedance is inferred and used to
differentiate tissue [11]. A modified biopsy needle with an
EIS sensor that maintained the function of excising samples
is shown in [7]. Similarly, the Injeq needle [9] features an
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eccentric electrode geometry that gives the needle highly
localised sensitivity [12]–[15]. A hypodermic needle with an
EIS sensing circuit manufactured on the needle tip is shown
in [16] to discriminate cancerous renal tissue from healthy
[17]. The device was also used on ex-vivo human thyroids
to discern benign tissue and malignancy and presented a
sensitivity and specificity of 78.2% and 85.3%, respectively
[18]. A quadra-polar EIS sensing probe was used to detect
cervical intraepithelial neoplasia (CIN) in [19]. An external use
electrical bioimpedance measuring probe for ex-vivo prostate
cancer detection is presented in [20].

The observed EIS spectra need to be classified to be clini-
cally relevant, and this is often achieved with machine learning
algorithms. Classification of EIS spectra falls into two general
groups: fitting impedance spectra onto equivalent circuits, and
classifying spectra directly. In the first case, an electric circuit
is created and the circuit parameters are optimised to match
the observed spectra [21], [22]. In the second case, machine
learning is often used [7], [20], [23]. While the second option
may provide better results than the first [24], [25], the size
of the dataset must be sufficiently large to adequately train
the classifier. However, due to the time and cost associated
with gathering biomedical data, gathering a sufficiently large
dataset is difficult and not always feasible.

A. Related work

A common strategy to obtain large quantities of data for
classifier training is to synthesise or augment a given dataset.
For example, in the field of computer vision, synthetic data
is a means of bolstering the size and scope of a train-
ing dataset and improving classification performance. While
digital images can be skewed, rotated, flipped etc., spectral
data, such as in EIS, must maintain their relationship from
feature to feature as they are a structured series [26]. Spectral
data synthesis has been applied to Raman spectroscopy (RS)
to bolster dataset size for clinical classification [27], [28].
Gaussian kernel density estimation was used in [29] to bolster
RS spectra for a brain cancer dataset. A statistical method
for data augmentation of RS spectra wherein the recorded
spectra are altered slightly from the mean value is shown
in [30]. Electroencephalogram (EEG) data augmentation has
been performed using the addition of a priori artifacts and
Gaussian white noise to bolster classifier robustness against
noise and artifacts [31]. Gaussian white noise is again used
in [32] to increase the size of a small EEG training dataset
by generating new entries, similar enough to the originals
but varied to increase the feature space span. A modified
generative adversarial network (GAN) is presented in [33] to
bolster EEG training dataset size. Over- and under-sampling
have also been applied to EEG datasets to mitigate imbalance
during training [34], [35].

While deep learning data augmentation can provide satis-
factory synthesis, these methods are often difficult to evaluate.
For example, in the case of GANs, tertiary means of eval-
uation must be implemented, such as the Frechet intercept
distance [36]. Variational autoencoders are also difficult to

evaluate, oftentimes relying on the performance of a down-
stream discriminative model. These methods use latent or
random variables to generate the entries, and so even statistical
evaluation is not an indication of general performance, but
rather an indication of the performance of a single run [37].
Further, a deep model’s performance strongly depends on the
size of the dataset and may collapse during training. Noise
addition models are similar in effect to over/under sampling
methods and often encourage overfitting. Probabilistic models,
on the other hand, allow for a direct model of the data being
generated to be exploited. A probabilistic model that requires
only knowledge of the mean and standard deviations of the
features of an entry may be able to mitigate some of these
problems and work with a small-sized dataset.

This paper proposes a statistical data augmentation method
based on inverse transform sampling (ITS). It exploits the
cumulative distribution functions of the target data and uses
inverse sampling to generate new, synthetic data to bolster
training dataset size. The proposed model is validated using
an EIS dataset acquired using a sensorised biopsy needle
and the data augmentation method is evaluated using both an
artificial neural network (ANN) and a convolutional neural
network (CNN). The classification results indicate that classi-
fication metrics are improved when using the proposed data
augmentation method with sensitivity, precision, and accuracy
increasing by at least 27.38%, 24.86%, and 19.41%, respec-
tively. The method presented is easy to implement, provides
good improvements over a baseline without data augmentation,
and is less computationally taxing than contemporary deep
generative models.

The paper is structured as follows: Section II explains the
working principle of EIS for biomedical tissue classification,
Section II-A elaborates on the proposed data synthesis method,
Section III-A discusses classifiers and metrics for performance
evaluation, Section IV presents the classification results with
and without synthesised data. Finally, Section V provides a
discussion of the results and an overview of future work.

II. STATISTICAL DATA AUGMENTATION FOR EIS
Before describing the proposed algorithm, it is important to

lay out the principles of EIS and how data is collected. In EIS,
a voltage V (jω) having amplitude V0, and angular frequency
ω = 2πf , where f is the excitation frequency in Hz, that is

V (t) = V0 sin(ωt), (1)

where t is the time, is applied to the tissue sample. If the
tissue’s frequency-dependent impedance Z(jω) is

Z(jω) = R+ Y (jω), (2)

where R is the electrical resistance and Y (jω) is the reactance,
with j =

√
−1, then the current induced in the sample is

I(t) = I0 sin(ωt+ θ) =
V (jω)

Z(jω)
(3)

where I0 is the current magnitude and θ is the phase shift
of the current relative to the voltage. From the above, the
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Fig. 1. A comparison of measured and synthesised spectra.

magnitude and phase of the tissue’s impedance at a frequency
ω are

|Z(ω)| =
√
R2 + Y 2, (4)

θ = −arctan
(
Y

R

)
. (5)

The objective of EIS is to collect the phase and magnitude
of the tissue’s impedance at a discrete number of frequencies
and classify the tissue type based on this information.

A. Data synthesis from inverse transform sampling

In this paper, samples are grouped by their class, c, e.g.,
chicken liver, bovine muscle, etc. A feature x of a given class
is either the phase or the magnitude of sample c’s impedance
at a given frequency. If each feature is measured n times, the
spectral data of class c, that is Xc, is structured as:

Xc =


x1,1 x1,2 . . . x1,m

x2,1 x2,2 . . . x2,m

...
...

. . .
...

xn,1 xn,2 . . . xn,m


where xi,k is the ith unique entry, i ∈ [1, n], of the kth feature,
k ∈ [1,m]. In this structure, each column of Xc has all the
magnitude or phase measurements of given a frequency, and
each row has all features from a given measurement.

The means and standard deviation of each class are calcu-
lated as:

µk =
1

n

n∑
i=1

xi,k (6)

and

σk =

√√√√ 1

n

n∑
i=1

(xi,k − µk)2. (7)

A Gaussian cumulative distribution function having the same
mean and standard deviations calculated above is then created
at each frequency to create new, synthetic data entries. It is
assumed that the entries of each feature adhere to a Gaussian
distribution, and are monotonically increasing.

A vector r ∼ N (0, 1) of normally distributed random points
is first generated. The relative likelihood associated with a
value of r is found using the Gaussian cumulative distribution
function,

p = Fr(r) =
1

2

[
1 + erf

(
r√
2

)]
, (8)

where Fr is the cumulative density function of r and Fr : R →
[0, 1], r is the point at which the probability is being calculated,
p is the probability of r, and erf is the error function:

erf(x) =
2√
π

∫ x

0

e−t2dt.

The inverse of the cumulative distribution function, also known
as the percent point function or the quantile function, shown
as Q = F−1

r : [0, 1] → R, can be used to take the probabilities
of the random, normally distributed variable and determine the
equivalent values in the domain of k. The quantile function
of the feature, Qm, can be generated and used to translate the
Fr(r) to the domain of k as

g = Qk(p) = F−1
k (p) (9)

where g is the translated random entries. Following this
transformation, g ∼ N (µk, σk). These new entries will appear
similar to those of the original entries as they exist in the same
probability distribution, but as each frequency is considered
independent, the covariance of features is lost. Further, as
the random points used to generate new entries and normally
distributed, their translations will too be normally distributed,
which may not be the case for the original data.

An example of the statistically synthesised data compared
to original data is shown in figure 1, and a plot showing the
statistical distribution congruency and translation between the
original and synthesised data domains for a single feature of
a single class at a single frequency is shown in figure 2. A
pseudocode representation of the statistical data synthesiser is
shown in Algorithm 1.

Algorithm 1 ITS data augmentation data algorithm
for m do ▷ Find statistical representation of each feature

µk = mean(xi,k)∀i ∈ n
σm = stddev(xj)∀i ∈ n
r ∼ N (0, 1)
p = Fr(r) : R → [0, 1]
g = Qk(p) = F−1

k (p) : [0, 1] → R
end for

The synthetic data is statistically identical to the original
data and maintains its representation of the feature space.
Synthetic data can be created to bolster the size of the training
dataset and still be representative of the original feature space.

III. EXPERIMENTAL VALIDATION

A. Data collection

A sensorised needle in bipolar configuration is used for
EIS measurements of various tissue samples. The needle is
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Fig. 2. Original and synthesised cumulative density function for one feature
of one class. The left x axis shows the distribution of a randomly generated
variable, and the x axis on the right shows the distribution of a given feature
of a given class. The y-axes show the probability distribution of the variable
in question.

Fig. 3. In (a) the Sensorised electrode in the introducer needle. In (b) the
sensorised electrode with macro shots of the needle tip showing the coaxial
electrode configuration.

composed of a coaxial cable electrode (Mouser, model 095-
902-462-009) inserted in a rigid surgical introducer needle
(Argon Medical Devices, model MCXS1815LX), figure 3a.
The coaxial cable has an inner diameter of 0.30 mm and an
outer diameter of 1.16 mm, see the right side of figure 3b.
The woven shielding of the coaxial cable acts as the outer
electrode, and the inner cable as the inner electrode. The
electrodes have a separation distance of approximately 0.35
mm.

The needle is connected to an impedance spectroscopy sys-
tem (Eliko, model Quadra impedance spectroscopy analyzer).
A set of 23 frequencies spaced from 0.01 to 350 kHz are
used for the measurements. At each frequency, the resultant
magnitude and phase change are measured. Collection of the
ex-vivo animal tissue data is outlined in [24].

The original dataset is composed of 13 different tissue types.

For each tissue, between 14 and 22 measurements are taken,
totalling 246 spectra. This data is split into two subsets, a
training set, and a test set. The original training set serves
two purposes: it is used as the input to the data augmentation
algorithm and to train the classifiers described later. The test
set is held out and only used to evaluate the accuracy of the
classifiers following training.

In addition, 325 new spectra are created for each of the 13
tissue classes using the data synthesis method outlined above.
These are split into a synthesised training set of 250 spectra,
and a validation set of 75 spectra. Thus, there are a total of 4
datasets of varying combinations of spectra. Each has 3 subsets
of data: a train set to train the network, a validation set to
validate the model during training, and a test set to evaluate
the model after training.

• Dataset 1 (DS1): 103 original to train, 43 original to
validate, and 103 original to test the model;

• Dataset 2 (DS2): 143 original and 2250 synthesised to
train, 975 synthesised to validate, and 103 original to test
the model;

• Dataset 3 (DS3): 103 original and 2250 synthesised to
train, 43 original and 975 to validate, and 103 original to
test the model;

• Dataset 4 (DS4): 2250 synthesised to train, 975 synthe-
sised to validate, and 103 original to test the model.

DS1 is used to train and evaluate the classifiers without
augmented data and serves as a baseline. When augmented
data is used, the classifiers are retrained and reevaluated
using datasets DS2, DS3, and DS4. The variations between
these 3 datasets will show how well the synthesised data can
generalise to the original data.

B. Classification algorithms

The quality of a synthesised training dataset can be eval-
uated by comparing the performance of a classifier trained
on the original data to a classifier trained on the synthesised
data. In this paper, effectiveness of the proposed algorithm
is evaluated through an artificial neural network (ANN), and
a 1-dimension convolutional neural network (CNN). Both
classifiers are trained on the original data alone and then
separately with the augmented data.

The ANN is composed of 3 layers: a dense layer with 100
units and ReLU activation, a dense layer with 1000 units,
ReLU activation, and a dropout function with probability 0.2,
and a third dense layer with 13 units and softmax activation.

The CNN consists of a convolutional layer with 128 filters,
batch normalization, max pooling, and leaky ReLU activation.
Next, a flatten layer is followed by a dense layer with 100
units, batch normalization, dropout with a probability of 0.2,
and leaky ReLU activation. Lastly, decisions are made with
a dense layer with 13 units and softmax activation, shown in
figure 4. Both classifiers are trained using the same computer
(Intel, model i5-8350U at 1.7 GHz) for a maximum of 1000
epochs, use Adam optimisation, and sparse categorical cross-
entropy for loss. The most accurate model with the highest
validation accuracy is saved and evaluated on the test dataset.

Authorized licensed use limited to: Carleton University. Downloaded on May 05,2024 at 14:35:57 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. CNN structure. Layer 1: Convolutional layer with batch normalization,
max pooling, and leaky ReLU activation. Layer 2: Flatten layer. Layer 3:
Dense layer with batch normalization, dropout, and leaky ReLU activation.
Layer 4: Dense layer with Softmax activation.

TABLE I
CLASSIFIER TRAINING PERFORMANCE

Classifier Dataset Training time (s) Validation accuracy (%)

ANN DS1 31.9 20.7
DS2 274.3 99.8

CNN DS1 42.7 24.1
DS2 568.1 99.7

Metrics for evaluating classifier performance are sensitivity,
precision, and accuracy.

IV. EXPERIMENTAL RESULTS

The two classifiers’ training performances are compared in
Table I. Both classifiers take approximately 10 times longer to
train when using the augmented data, which is a reasonable
trade-off as the synthesised data set is approximately 20 times
larger than the original dataset.

Table II summarises the classification results using the
original and augmented data with both the ANN and CNN
classifiers. The ANN with the original data, DS1, shows
sensitivity, precision, and accuracy of 53.57%, 51.41%, and
63.11%, respectively. Using the DS2 data configuration on a
retrained model, these metrics increase by 27.38%, 24.86%,
and 19.41%. The DS3 configuration, which includes some
original data in the validation set, provides a sensitivity,
precision, and accuracy of 81.88%, 76.56%, and 83.50%, an
even larger increase. DS4, which uses only synthesised data
gives a sensitivity, precision, and accuracy of 77.36%, 71.23%,
and 78.64%, which is a significant improvement over the
original dataset alone.

The CNN trained only on original data, DS1, shows sensitiv-
ity, precision, and accuracy of 53.01%, 40.24%, and 49.51%,

TABLE II
CLASSIFIER ACCURACY (%) FOR DIFFERENT COMBINATIONS OF

TRAINING, VALIDATION, AND TEST DATASETS (DS)

Classifier Dataset Sensitivity Precision Accuracy

ANN

DS 1 53.57 51.41 63.11
DS 2 80.95 76.27 82.52
DS 3 81.88 76.56 83.50
DS 4 77.36 71.23 78.64

CNN

DS 1 53.01 40.24 49.51
DS 2 81.98 75.23 82.52
DS 3 83.02 78.67 84.47
DS 4 70.82 68.05 71.84

respectively, and these metrics increase to 81.98%, 75.23%,
and 82.52% with the DS 2 configuration. The CNN trained
on the DS3 configuration gives 83.02%, 78.67%, and 84.47%
for sensitivity, precision, and accuracy. The use of original
and synthetic data in training and validation thus increases
sensitivity, precision, and accuracy by 30.01%, 38.43%, and
34.96%, respectively. Evaluating the CNN on the DS4 config-
uration gives a sensitivity, precision, and accuracy of 70.82%,
68.05%, and 71.84%.

In both the ANN and CNN classifiers, the augmented
data increases the sensitivity significantly. After training, both
the ANN and CNN are capable of real-time classification,
providing predictions for a single entry in 20 ms and 17 ms,
respectively.

V. DISCUSSION AND CONCLUSION

Using inverse sampling for data synthesis to increase the
small sample size of EIS measurements for tissue classification
has been shown to be effective. Important metrics for clinical
classification such as sensitivity see at least a 15% increase
relative to baseline. The synthesised data can be seen to be
effective as training a model only on the synthesised data,
DS4, allows the network to perform better than training the
model only on original data. It seems that providing some
original data to the train set and some to the validation set,
DS3, provides the best results overall, with both the CNN and
ANN scoring the best in this configuration. Using no original
data in the validation set, DS2, performs almost as well as DS3
and should also be considered. A further comparison can be
made to [24] wherein only the original data is used, equivalent
to DS1. In that publication, the highest sensitivity obtained
was 80.58%. In most cases, the ANN and CNN provided here
using synthesised data match or beat that value, indicating
good performance and an improvement over baseline.

The data synthesis method presented in this paper is simple
to implement, requiring only a Gaussian cumulative distribu-
tion representation of the data to be synthesised. It is limited in
terms of its ability to create data not represented by the original
dataset, but this is an issue that befell most data synthesis
methods. Further, it does not maintain the relationship between
features covariance’s, which may lead to poor feature space
representation. However, machine learning methods provided
with training data synthesised using this method significantly
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outperform the equivalent models when they are not provided
with synthetic data.

In terms of biomedical applications of EIS, the limitations
on data collection for training classifiers compromise the accu-
racy of the machine learning algorithms used for classification.
The results presented in this paper show that a neural network
trained on feature space expanding EIS sensorised biopsy
needle synthetic data can better classify ex-vivo animal tissue
better than one not trained with synthetic data.
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